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Domain-specific experience and
dual-process thinking

Zo€e A. Purcell, Colin A. Wastell and Naomi Sweller

Department of Psychology, Macquarie University, Sydney, Australia

ABSTRACT
Prominent dual process models assert that reasoning processes can transition
from effortful (Type 2) to intuitive (Type 1) with increases in domain-specific
experience. In two studies we directly examine this automation hypothesis.
We examine the nature of the relationship between mathematical experience
and performance on the cognitive reflection test (CRT; Frederick, 2005).
We test performance and response time at different levels of experience
and cognitive constraint. Participants are required to complete a secondary
task of varying complexity while solving the CRT. In Study 1, we demonstrate
changes in thinking Type across real-world differences in mathematical
experience. In Study 2, convergent with Study 1, we demonstrate changes in
thinking Type across a mathematical training paradigm. Our findings suggest
that for some individuals low experience is associated with Type 1 processing,
intermediate experience is associated with Type 2 processing, and high
experience is associated with Type 1 processing. Whereas, for other individu-
als low experience is associated with ineffective Type 2 processing, intermedi-
ate experience is associated with effective Type 2 processing, and high
experience is associated with Type 1 processing.
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A novel problem or task may seem difficult at first, but with enough prac-
tice, it can become easy and routine. Practice and the process of learning is
often accompanied by some mild cognitive unease and effortful thinking,
but—over time—can eventuate in a transition from effortful to effortless
thinking. Reasoning and thinking scholars, particularly dual process theo-
rists, are interested in the differences between effortful (Type 2) and intui-
tive (Type 1) thinking, and have suggested that some Type 1 processes may
be the product of Type 2 processes having been practiced to the point of
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automation (e.g., Epstein, 1994; Evans & Stanovich, 2013; Kahneman, 2011;
Sloman, 1996; Stanovich, 2018). This transition phenomenon (from Type 2
to Type 1), also known as the process of automation, is more thoroughly
developed in theories such as Klein’s (2003) naturalistic decision-making
theory, Gigerenzer’s (2007) fast and frugal heuristics theory, Reyna’s (2012)
fuzzy trace theory, and Wastell’s (2014) emergent modularity theory.
Recently, however, the issue of automation has come to the forefront of
dual process theorising (De Neys & Pennycook, 2019; Stanovich, 2018).

The key tenet of dual process theory is that reasoning is achieved via
two distinct types of processes: Type 1 which is automatic and intuitive,
and Type 2 which is deliberate and effortful (e.g., Epstein, 1994; Evans &
Stanovich, 2013; Kahneman, 2011; Sloman, 1996). Evans and Stanovich
(2013) defined Type 1 processes as autonomous: they do not require
controlled attention, are not dependent on input from high-level control
systems, and—importantly—do not require working memory. Type 2 proc-
esses are characterised by the engagement of a general-purpose system,
are responsible for cognitive decoupling and hypothetical thinking, and—in
contrast to Type 1 processes—require working memory. Working memory
is thought to be a relatively stable “hardware” of an individual’s higher cog-
nition, used to hold information that can be accessed and manipulated for
a short time, but which is vulnerable to interference from competing cogni-
tive tasks (e.g., Baddeley, 1986; Engle et al., 1999; Hambrick & Engle, 2002).
The assertions that 1) reasoning becomes less dependent on working mem-
ory with practice, and 2) the distinction between thinking Types by the
involvement (or not) of working memory are widely accepted within dual
process theorising. However, until recently the integration of these asser-
tions has been limited (for a review, see De Neys, 2017).

Recently, Stanovich (2018) discussed the interaction between thinking
Type and experience. Building on classic models of automation (e.g.,
LaBerge & Samuels, 1974; Shiffrin & Schneider, 1977), he theorised a
“mindware continuum” along which the reasoner’s dependence on working
memory shifts as domain-specific experience increases. The continuum
depicts a person’s reasoning as they move from low to high experience,
that is, as they develop more advanced mindware. At novice stages of
learning and experience, Stanovich suggests that the relevant mindware
has not yet been developed. Further along the continuum, as the mindware
is practiced and developed in long-term memory, the relevant procedures
can be retrieved via Type 2 processes. Stanovich calls this intermediate
phase the “Zone of Conflict” reflecting the role of cognitive unease postu-
lated by hybrid dual process models that suggest that cognitive uncertainty
may play a role in engaging Type 2 processes (see De Neys, 2012, 2014;
Thompson, 2009; Thompson & Johnson, 2014). Once the reasoner
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progresses through the intermediate phase or “Zone of Conflict”, and the
mindware becomes overly practiced, the relevant processes begin to dis-
play Type 1 characteristics. That is, the solution procedure for the task or
problem can be retrieved and instantiated automatically and autonomously
(i.e. without working memory). Stanovich effectively integrated the trad-
itional models of automation with the contemporary dual process theories
of reasoning. As such, he provided a solid theoretical grounding for the
relationship between experience and Type of reasoning from a broad dual
process perspective.

Although the proposed relationship between experience and thinking
Type is consistent with a broad dual process approach to reasoning, it can
be incorporated by some modern dual process models more easily than
others. As Stanovich (2018) highlights, the models that are particularly suit-
able suggest that multiple Type 1 processes can be triggered at the outset
of problem solving (De Neys, 2012; Handley & Trippas, 2015; Pennycook
et al., 2015; Trippas & Handley, 2017). Of these, the logical intuition model
is perhaps the most appropriate for the task as it contains a detailed frame-
work for the mechanisms underlying the automation continuum. The
logical intuition model asserts that, when faced with a problem, multiple
Type 1 reasoning processes may be activated (De Neys, 2012, 2014).
Although only the process with the highest activation is actioned or “wins
out”, the relative strength of each of the activated processes has cognitive
ramifications. If two or more processes have similar levels of activation, con-
flict may occur which can manifest as a sense of cognitive unease or uncer-
tainty (Bago & De Neys, 2017; De Neys, 2012, 2014). The more similar the
relative activations, the more conflict a reasoner is expected to experience.
This conflict, according to the model, may be involved in the engagement
of Type 2—working memory dependent—processes. When considered
alongside Stanovich’s (2018) “mindware continuum,” hypotheses can be
formed about the interaction between experience, thinking Type, and task
performance. This proposed phenomenon is reflected in Figure 1.

Figure 1. Conjectural model of the relationship between increases in experience, the
relative activations of heuristic and logical processes, and the Type of reasoning that
is engaged. H¼Heuristic process, L¼ Logical process.
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Figure 1 presents the hypothesised trajectory of reasoning Type as a per-
son’s experience increases. In line with the assertions from Stanovich’s
(2018) mindware continuum and De Neys’ (2012, 2014) logical intuition
model, the figure shows the activation of two processes over time, one
leading to a heuristic response and the other leading to a logical response.
The more training the logical process undergoes, the greater its activation
potential and the more likely it is to “win-out” in the future. At Time 1, prior
to training, the reasoner gives the heuristic response, experiences little con-
flict, and subsequently engages very little working memory—characteristic
of Type 1 processing. After some training, at Times 2 and 3, the activation
of the logical process comes closer to that of the heuristic response. At this
intermediate stage, the similar activations of the two processes may lead
the reasoner to experience more conflict and greater working memory
engagement—characteristic of Type 2 processing and Stanovich’s (2018)
“Zone of Conflict”. At Times 3 and 4, the reasoner gives the correct, logical
response. At Time 4, the difference between activations is larger than at
Time 3. Therefore, the reasoner experiences less conflict and working mem-
ory engagement decreases—characteristic, once more, of Type 1 process-
ing. Although this example is highly simplified, it demonstrates the
principle of transitioning from heuristic to logical processes via training.

There are three key phases of the mindware trajectory in regard to the
expected shifts thinking Type across experience. First, the reasoner employs
Type 1 processing; second, they engage Type 2 processing; and third, they
employ Type 1 processing once again. The proposal that logical processes
can become Type 1 is supported by the relationship observed between
cognitive capacity and logical intuition (Raoelison et al., 2020; Thompson
et al., 2018). Thompson et al. (2018) found that when high-capacity reason-
ers made belief-based judgements they were influenced by logical princi-
ples, while the opposite was true for low capacity reasoners. Relatedly,
Raoelison et al. (2020) observed a stronger relationship (r¼.42) between
cognitive capacity and intuitive correct responses than capacity and
deliberative correct responses (r¼.13). These studies suggest that for high-
capacity reasoners, some of whom may also have been high-experience
reasoners, the logical responses were more accessible than the heuristic
response. This is in line with the later stages of the proposed mindware tra-
jectory (Stanovich, 2018).

Examining the proposed shifts between reasoning Type requires deter-
mining the Type of thinking in which a reasoner is engaged and whether
that Type of reasoning shifts systematically over changes in experience. In
the empirical components of this article, we achieve this by testing per-
formance across different levels of cognitive constraint and experience.
Previous studies have employed cognitive constraint techniques to
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determine a reasoner’s thinking Type. These techniques are based on the
dual process assertions that Type 2 processes demand more time and cog-
nitive resources than Type 1 processes (Kahneman & Frederick, 2005;
Kahneman, 2011). Hence, constraints that deprive the reasoner of time or
working memory resources, like a time-limit or secondary task, have been
used to determine whether the participant had required Type 2 thinking to
solve a particular problem (e.g., Bago & De Neys, 2017, 2019; Thompson
et al., 2011). These paradigms have been used to examine the nature of rea-
soning on the CRT (e.g., Bago & De Neys, 2017, 2019).

The CRT is a three-item test that commonly elicits heuristic, errone-
ous responses (Frederick, 2005). Consider the first CRT problem: “A bat
and a ball together cost $1.10. The bat costs $1 more than the ball. How
much does the ball cost?” This problem often prompts the heuristic
response—10c, despite most responders having the ability to reach the
logical solution—5c. As the name suggests, the CRT was originally pro-
posed as a test of reflective thinking. Like many bias tasks, correct
responses were interpreted as the result of Type 2 processes intervening
and correcting the default Type 1 solution (e.g., Kahneman, 2011;
Kahneman & Frederick, 2005; Toplak et al., 2011). However, studies that
have employed cognitive constraints to examine the Type of thinking
used to complete the CRT have yielded varied results (e.g., Bago & De
Neys, 2017, 2019).

These studies have found evidence for logical responding on the CRT
via both Type 1 and Type 2 processes. For example, Johnson et al. (2014,
2016) demonstrated that, on average, participants’ performance on the
CRT fell when they were required to complete a simultaneous visuospatial
task. This indicates that at least some of the participants’ correct
responses were derived from Type 2 processes. Using an alternative cogni-
tive constraint method, however, Bago and De Neys (2019) found that
most participants giving correct responses on the bat-and-ball problem
(the first item in the CRT) were doing so via Type 1 processes. Bago and
De Neys employed a two-response paradigm in which participants were
given two attempts to complete the bat-and-ball problem; the first
attempt under cognitive load and time-pressure, and the second, without
cognitive constraints. They found that most respondents who gave a cor-
rect answer at the second attempt, also gave the correct answer for their
first attempt, indicating that these responses were the product of Type 1
processing. However, there was also a portion of participants who were
only able to provide a correct response at the second attempt without
cognitive restrictions; indicating that they had reached the solution via
Type 2 processing. Together, these studies suggest that both Type 1 and
Type 2 processes can be used to reach the logical solutions on the CRT.
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Bago and De Neys (2019) considered that the correct responses provided
under Type 1 conditions may be due to those reasoners having automated
the required process. They acknowledged that automation is the goal of
many learning contexts and that years of exposure during high school or
other mathematical training may have helped these reasoners to do just
that. In line with this interpretation and the theoretical assertions that
thinking Type shifts across changes in domain-specific experience, we note
that those participants who required Type 2 processes for success on the
CRT may have been at an intermediate point of the automation such that
they still needed to go through a process of deliberation that required cog-
nitive resources. From the perspective of Stanovich’s (2018) mindware con-
tinuum, these participants may have been in the “Zone of Conflict” in
which the relevant procedures could only be retrieved via Type 2 processes.
In the current article, we empirically explore the possibility that individual
differences in mathematical experience may lead to systematic variability in
their engagement of working memory when completing the CRT.

In two studies, we establish a trajectory of thinking Types across changes
in experience. This is the first instance that we know of where experience
manipulations have been used in conjunction with the CRT and cognitive
constraints. We chose to focus on the CRT for several reasons. First, it is a
mathematical problem-solving task, shown to correlate with numeracy (e.g.,
Cokely & Kelley, 2009; Liberali et al., 2012) and, therefore, lends itself to
straightforward manipulations of mathematical experience. Second, most
people give the incorrect responses on the CRT, leaving a greater capacity
for improved performance via training (Frederick, 2005). Third, the CRT is a
centrepiece of prominent reasoning models and features heavily in dual
process literature. Therefore, it is an appropriate place to start when first
testing the interaction between thinking Type and experience from a dual
process perspective.

In both studies we examined the relationship between thinking Type
and experience. Study 1 examined the relationship between real-world dif-
ferences in mathematical experience, a manipulation of cognitive con-
straint, and performance on the CRT. Study 2 expanded on Study 1’s
design. It included a within-subject manipulation of experience (via train-
ing), a manipulation of cognitive constraint, a measure of working memory
capacity (WMC; included as a continuous covariate), and measures of
response time and performance on the CRT. Cognitive constraint was
manipulated in both studies through the use of matrix memory tasks (Bago
& De Neys, 2019). Study 1 employed a 2 (constraint) x 3 (experience)
between-subjects design and Study 2 employed a 3 (constraint) x 3 (test
point) x WMC (continuous covariate) mixed design. The hypotheses for
each study are outlined in the corresponding sections below.
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Study 1

In Study 1, experience was operationalised by classifying participants into
one of three groups according to their university course or occupation
(experience: low, intermediate or high). Cognitive constraint was manipu-
lated by randomly allocating participants to one of two constraint condi-
tions (constraint: load or no-load). We expected that, for CRT performance:

1. Participants with more mathematical experience would outperform
those with less experience;

2. Participants in the no-load condition would outperform those in the
load condition;

3. Participants with intermediate experience would be affected by the
load to a greater extent than those with low or high experience.

Method

Participants and design
Study 1 employed a 2 (constraint) x 3 (experience) between-subjects
design. Only one female participant qualified for the high experience group,
therefore, this participant was excluded, and we used an all-male sample
for the low and intermediate experience groups1. Final participants were 65
males, with ages ranging from 18 to 72 years (Mage¼25.46, SD¼ 12.96).
Participants were randomly allocated to the no-load (N¼ 34) or load
(N¼ 31) condition. Low experience participants were 26 undergraduate
psychology students at Macquarie University, Sydney (Mage¼21.96,
SD¼ 10.65). Intermediate experience participants were 24 undergraduate
actuarial, science, or engineering students at Macquarie University, Sydney
(Mage¼20.33, SD¼ 4.00). High experience participants were 15 postgraduate
mathematical students at Macquarie University, Sydney, or professional
mathematicians (Mage¼39.73, SD¼ 15.94). Undergraduate participants were
recruited from Macquarie University, and non-students were recruited via a
mathematics website. Psychology students were awarded course credit for
participation. Non-psychology students were offered the chance to enter a
draw for one of three $AU50 vouchers.

Materials
CRT. The three-item CRT was used (Frederick, 2005). There was no time
limit imposed and a free-response format was used (i.e. not multiple

1Gender has been shown to affect CRT performance through mathematical anxiety (e.g., Frederick,
2005; see Morsanyi et al., 2018; Primi et al., 2018).
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choice). Participants entered a number in the units specified on screen.
Total scores ranged from 0–3.

Constraint. Matrices were used as cognitive constraints. Participants were
required to memorise 3� 3 grids with four coloured squares presented for
800ms (see Table 1). This task was adapted from previous dot matrix mem-
ory tasks for use on the Qualtrics survey platform. The matrices had four
coloured squares that formed “three-piece” patterns (see Table 1; Bethell-
Fox & Shepard, 1988; Verschueren et al., 2004). Matrices have been used
effectively to impose constraints on reasoning processes (e.g., Bago & De
Neys, 2019; Johnson et al., 2014, 2016). Matrix performance scores were cal-
culated by scoring each coloured (or not) square as correct or incorrect.
Scores are reported as percentages.

Numeracy. Hegarty et al.’s (1995) 12-item numeracy test was used to sub-
stantiate the categorisation of participants by course and occupation as a
reflection of mathematical experience. There were no time limits imposed
and a free-response format was used. An example of a PST item is: “At
McDonald’s, workers earn $6.00 per hour. This is 50 cents less per hour
than workers at Wendy’s. If you work for 8 hours, how much will you earn
at Wendy’s?” Scores could range from 0–12.

Procedure
Study 1 was completed online via Qualtrics. After consent was obtained,
participants completed a series of demographic questions, they then

Table 1. Presentation of materials for (a) no load and (b) load conditions. Each of
the four elements were presented on separate pages. The order of the elements
differed between conditions.

First Second Third Fourth

(a) No load
Condition

Information
component
(e.g., A bat
and a ball cost
$1.10 in total.
The bat costs
$1.00 more
than the ball.)

Matrix: Recall: Full item (e.g., A
bat and a ball
cost $1.10 in
total. The bat
costs $1.00
more than the
ball. How
much does the
ball cost?___)

(b) Load
Condition

Information
component
(e.g., A bat
and a ball cost
$1.10 in total.
The bat costs
$1.00 more
than the ball.)

Matrix: Full item (e.g., A
bat and a ball
cost $1.10 in
total. The bat
costs $1.00
more than the
ball. How
much does the
ball cost?___)

Recall:
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completed the CRT and constraint task, and finally the numeracy test. Prior
to the CRT and constraint task, participants were provided with general
instructions. Further instructions were presented on subsequent pages as
appropriate, for example when the matrix pattern appeared, participants
were instructed: “Remember this grid pattern, you will be asked to recall it
later.” The same materials were presented to every participant. However,
the order in which the materials were presented varied between the no-
load and load conditions. All participants were first presented with the
information component of the question. The information component of
the questions was presented first, before the matrix pattern, to minimise
the effect of the load on the comprehension process (Van Lier et al., 2013).
For example, the information component of the bat and ball problem
stated: “A bat and a ball cost $1.10 in total. The bat costs $1.00 more than
the ball.” All participants were then presented with the matrix pattern to
memorise. From this point, the participants in the no-load condition
proceeded directly to the ‘recall’ page where they clicked the squares corre-
sponding to the preceding matrix. No-load participants were then pre-
sented with the full CRT item to solve. In contrast, after memorising the
matrix pattern, participants in the load condition were then asked to solve
the CRT item (while remembering the matrix pattern), and—finally—to
recall the matrix pattern (see Table 1). Those in the load condition were
therefore required to solve the problems under cognitive constraint,
whereas those in the no-load condition were able to solve the CRT item
with no simultaneous task or constraint.

Results

Preliminary analysis
Numeracy was analysed to check the categorisation of mathematical experi-
ence by course and occupation. High experience participants scored higher
(M¼ 10.27, SD¼ 1.53) than intermediate experience participants (M¼ 9.70,
SD¼ 1.79) who, in turn, scored higher than low experience participants
(M¼ 9.35, SD¼ 1.94). These differences were not significant, F(2, 61)¼1.24,
p¼.295, g2p¼.04, likely due to ceiling effects. However, the positive trend
between experience categories and numeracy supports the grouping of
participants by course and occupation as a measure of mathematical
experience. Additionally, that all participants performed well on the numer-
acy test suggests that differences in CRT performance were not due to a
general lack of mathematical ability by any group.

Performance on the matrix memory constraint was analysed to check for
systematic differences in task preference between the experience groups;
that is, whether participants prioritised the matrix task over the CRT task, or
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vice versa. The effect of experience and constraint condition on matrix per-
formance was assessed using a two-way ANOVA. Participants in the no-load
condition (M¼ 92.05, SD¼ 14.39) outperformed those in the load condition
(M¼ 80.52, SD¼ 11.67) on the matrix memory task, F(1, 59)¼16.16, p<.001,
g2p¼.22. The main effect of experience on matrix performance was not sig-
nificant, F(2, 59)¼.74, p¼.480, g2p¼.03. There was a significant interaction
between experience and condition on matrix performance: F(2, 59)¼3.29,
p¼.044, g2p¼.10. This indicated that the effect of constraint condition on
matrix performance was different at different levels of experience.

An interaction contrast test was run comparing matrix performance for
those in the low and high experience groups combined, compared to those
in the intermediate experience group. This contrast revealed that the effect
of load condition on matrix performance was greater for intermediate par-
ticipants than low and high experience participants, F(1, 59)¼6.52, p¼.013,
g2p¼.10. This indicated that intermediate participants may have prioritised
the CRT over the matrix task to a greater extent than did low and high
experience participants. Conversely, low and high experience participants
may have prioritised the matrix task over the CRT more than intermediate
experience participants. This pattern of results suggested a potential for dif-
ferent task preference between the low and high experience groups and
the intermediate experience group in line with the primary hypotheses.
Therefore, we included matrix performance as a potential covariate in the
main analyses.

Main analysis
To test our three hypotheses, we used a 2 (constraint) x 3 (experience)
between-subjects ANOVA, with pairwise comparisons to follow up main-
effects, and interaction contrasts to follow up interaction effects. CRT scores
were significantly higher for participants with greater experience, averaged
across load condition, F(2, 59)¼31.02, p<.001, g2p¼.51. High experience par-
ticipants (M¼ 2.60, SD¼.63) outperformed intermediate experience partici-
pants (M¼ 1.54, SD¼ 1.06), F(1, 64)¼14.76, p<.001, g2p¼.19, who
outperformed low experience participants (M¼.65, SD¼.69), F(1, 64)¼14.04,
p<.001, g2p¼.19. The main effect of load was not significant when averaged
across experience, F(1, 59)¼2.04, p¼.158, g2p¼.03. However, there was a sig-
nificant interaction between experience and constraint condition on CRT
performance, F(2, 59)¼6.66, p¼.002, g2p¼.18.

An interaction contrast test was run to compare the difference in CRT
scores between the load and no-load constraint conditions for the low
and high experience groups combined, compared to the intermediate
experience group. Results revealed that the effect of load constraint
was greater for intermediates than for the low and high experience groups,
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F(1, 59)¼11.18, p¼.001, g2p¼.16. These results are presented in Figure 2. Due
to differences between groups on matrix performance (reported above) we
also ran this analysis with matrix performance included as a potential cova-
riate, however, the pattern of results was unchanged2. Therefore, we have
reported the results excluding matrix performance.

Discussion

Study 1 examined three hypotheses. In support of our first hypothesis, CRT
performance was higher for those with greater mathematical experience.
This finding is in line with previous studies that have shown positive associ-
ations between CRT performance and mathematical factors such as numer-
acy (Sinayev & Peters, 2015; Welsh et al., 2013) and SAT scores (Frederick,
2005; Obrecht et al., 2009; Thompson et al., 2013). Our second hypothesis
was not supported, CRT performance was not affected by constraint when
averaged across experience. This is similar to Bago and De Neys’ (2019)
finding that participants were able to complete the bat-and-ball problem
under cognitive constraint but contrasts with Johnson et al. (2014, 2016)
who observed a detrimental effect of load on CRT performance. However,
as the results pertaining to our third hypothesis indicate, the effect of con-
straint should be considered in relation to experience.

In support of our third hypothesis, load constraint and experience inter-
acted to affect CRT performance. The performance of intermediate partici-
pants was affected by the constraint to a greater extent than the

Figure 2. CRT performance by level of experience and constraint. Error bars reflect
þ/- 1 SE.

2These results are available from the authors on request.
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performance of low or high experience participants. This indicates that
intermediate participants were able to reach the correct solutions on the
CRT when sufficient working memory resources were available; they were
able to reach the correct solutions via Type 2 thinking. The high experience
group, conversely, did not show lowered performance under constraint;
they were able to reach the correct solutions via Type 1 thinking.

The nature of reasoning for the low experience group is less clear. The
constraint manipulation did not affect the performance of low experience
participants which may indicate that they had engaged Type 1 thinking.
However, it is also possible that the group was employing Type 2 thinking
but that the deliberation was ineffective in producing the correct solution
possibly due to a lack of mindware (Stanovich, 2018) or, for example, less
analytic dispositions (Pennycook et al., 2015). Although the low perform-
ance in both load and no load conditions was expected and in line with
Stanovich (2018) and De Neys’ (2012, 2014) models, future studies will be
needed to disentangle whether those with low experience were engaged
in Type 1 processing or if they were engaging in ineffective Type 2 process-
ing. One way to clarify which Type of reasoning was employed by partici-
pants exhibiting poor performance is to look at response times in
conjunction with accuracy. Slow responses and low performance would be
indicative of ineffective Type 2 processing, whereas, fast responses and low
performance would be indicative of Type 1 processing (see Stanovich, 2018;
Pennycook et al., 2015). While there are remaining questions about the
nature of the thinking for low experience participants, the pattern of results
for the intermediate and high experience groups provides reasonable evi-
dence to suggest that these groups had employed Type 2 and Type 1 proc-
essing, respectively.

The use of groups differing in real-world mathematical experience
increased the study’s ecological validity but also introduced limitations like
confounds and a limited sample size. Between-group differences in demo-
graphic factors like gender and age are likely to occur when employing
between-subject experience manipulations. In Study 1, gender was pre-
vented from becoming a potential confound by including an all-male sam-
ple, however, systematic differences in age were observed. Among adults,
aging is related to declines in executive functioning which could increase
the detrimental impact of cognitive constraints (Buckner, 2004; Park et al.,
1996). In Study 1, the high experience participants were impacted by the
load to a lesser extent than the younger intermediate group. Therefore, the
age-related differences are unlikely to account for the current findings. The
inclusion of an expert, high experience population, lead to a small sample
size which could limit the generalisability of the findings. The use of pre-
existing indicators of experience is likely to bring demographic disparities
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mirroring those in society and restrict sample size. While it is important to
examine the role of real-world differences in experience in reasoning, these
issues highlight the need for a within-subject experience manipulation.

In addition to demographic factors, the experience groups may have dif-
fered in their prior exposure to the CRT or psychological factors. Bialek and
Pennycook (2018) found that exposure to the CRT did not impact perform-
ance, and Janssen et al. (2020) found that even with accuracy feedback
(correct/incorrect) there was no significant improvement in performance.
This said, we cannot be sure if these factors influenced the Study 1 findings.
One way to reduce the likelihood of exposure confounds is to couple a
within-subject experience paradigm with random allocation to constraint
conditions. Additionally, experience groups may have differed on factors,
such as thinking dispositions or WMC, that have demonstrated associations
with CRT performance (e.g., Toplak et al., 2011). WMC is a particularly
important factor for consideration given the current use of a cognitive load
manipulation. It could be that high experience participants had larger
WMCs than intermediate and low experience participants. Consequently,
the high experience participants may have been able to engage in Type 2
processing even with the additional cognitive load. That is, the load
manipulation—while successfully used in previous studies—may not have
been large enough to “knock out” the WMC of those in the high experience
group. These issues are directly addressed in Study 2, which included a
within-subject manipulation of experience with an additional, harder con-
straint and a measure of WMC.

Study 1 is the first experiment to combine experience and cognitive con-
straint manipulations in a study of CRT performance. The findings showed
reasonable support for the dual process assertion that Type 2 processes can
become Type 1 processes with increases in experience. It also supports the
logical intuition model’s assertion that logico-mathematical principles can
be enacted via Type 1 processes (De Neys, 2012). In line with the interpreta-
tions of previous cognitive constraint studies and dual process theory (e.g.,
Bago & De Neys, 2019; Stanovich, 2018), the results from Study 1 suggest
tentatively that low experience participants were using Type 1 processes,
and more convincingly that intermediate and high experience participants
were using Type 2 and Type 1 processing, respectively. These findings are
largely consistent with the hypothesised relationship between experience
and thinking Type.

Study 2

As in Study 1, Study 2 aimed to examine the relationship between experi-
ence and thinking Type. Study 2 also aimed to address the limitations in
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Study 1 and develop a more sustainable method for the inclusion of experi-
ence in future studies. This was achieved with a within-subject training
manipulation of mathematical experience, the inclusion of a more taxing
cognitive constraint, the consideration of individual differences and the
examination of response times. This approach yielded a 3 (constraint) x 3
(test point) x WMC (continuous predictor) mixed design. As in Study 1, we
manipulated cognitive constraint with matrix tasks, in this case with three
levels: low, medium, and high. We examined CRT performance and
response times at three test points: before training (T1), halfway through
training (T2), and after training (T3).

We predicted that WMC would influence performance due to the rela-
tionships between WMC and cognitive load, and between WMC and auto-
mation (via experience). Holding the point of automation constant, the
greater an individual’s WMC, the less impact a cognitive load was expected
to have on performance (e.g., Baddeley, 1986; Engle et al., 1999; Hambrick
& Engle, 2002). WMC also affects speed of learning and subsequently, the
level of experience at which an individual will reach automation (e.g.,
Baddeley, 1986; Kyllonen, 1996; Kyllonen & Stephens, 1990). Individuals
with greater WMC were expected to automate processes more quickly and
“free up” working memory resources such that the reasoner would have a
greater capacity to withstand cognitive constraints as well as a greater cap-
acity for further learning and automation. These relationships were
expected to form a dynamic and cumulative effect of WMC on performance
across training. As such we expected a three-way interaction between
WMC, test point and constraint on CRT performance.

In Study 2 we also included an examination of response times. In line
with the mindware continuum, we expected that response times would be
fast at T1 (prior to training) due to the reasoner not having the adequate
mindware to detect conflict and engage Type 2 processes. In line with the
mindware continuum and the results in Study 1, we expected that response
times would increase at T2, reflecting Type 2 processing and the “Zone of
Conflict”, and decrease at T3, reflecting a shift back to Type 1 processing. At
this point, we should note that the extent of training needed to automate
the processes required for completing the CRT was unknown, hence, we
put forward these hypotheses tentatively regarding specific test points, but
strongly regarding the expected pattern.

In sum, we expected that:

1. Performance would increase with increases in experience (test point);
2. Test point, constraint, and WMC would interact to affect performance

such that at T2, participants with lower WMC would be negatively
affected by the load manipulation to a greater extent than those with
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higher WMC; this difference was expected to be smaller at T1 and T3
than at T2.

3. Response times were expected to increase from T1 to T2 and decrease
from T2 to T3.

Method

Participants and design
A total of 85 participants were recruited3. Participants were undergraduate
psychology students at Macquarie University, Sydney (22 males, 61 females,
2 unspecified). Ages ranged from 17 to 43 (M¼ 20.28, SD¼ 4.00). Participants
were awarded course credit for participation. Study 2 used a 3 (experience:
within-subject) x 3 (constraint: between-subject) x WMC (continuous pre-
dictor) mixed design. Experience was included as a within-subject factor with
three levels: T1, T2, and T3. Constraint was included as a between-subjects
factor; participants were randomly allocated to one of three conditions: low
load (N¼ 27), medium load (N¼ 30), or high load (N¼ 28).

Materials
CRT. The CRT was presented to the participants at each test point (T1, T2,
and T3; Frederick, 2005). The CRT questions were not included in the train-
ing sections and the participants were never exposed to the solutions.
Although the participants would see the CRT questions at three points in
the study, we note that this repetition, alone, was not expected to elicit
increased performance. A recent study by Raoelison and De Neys (2019)
presented participants with the bat and ball problem 50 times and found
the majority of participants continued to demonstrate the same pattern of
responding from start to finish. Therefore, rather than risk inadvertently
changing the difficulty or nature of the scale between test points, the par-
ticipants received the same items. As in Study 1, a free-response format
was used. Scores could range from 0–3 at each test point.

Cognitive constraint. As in Study 1, matrix memory tasks were included as
cognitive constraints. Study 2 employed low, medium, and high constraint
conditions. Low constraint matrices had three coloured squares in a 3� 3
grid that formed horizontal, vertical or diagonal lines. The medium con-
straint matrices had four coloured squares in 3� 3 grids that formed three-

3The sample size was based on detecting similar effects sizes as those observed in Study 1. Study 2
was expected to yield greater power because of the within-subject manipulation of experience;
however, it also included an additional variable, WMC. Taking these factors into account, a larger
number of participants were recruited. A power analysis conducted in R with 1000 simulations
revealed that this design would detect moderate to large effects with N¼ 84, 86.50% (CI:
84.22, 88.56).
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piece patterns. The high constraint matrices had five coloured squares in
4� 4 grids (e.g., Johnson et al., 2016; Tr�emoli�ere et al., 2012). See Figure 3.

Training materials. Eighteen training items were developed to reflect the
structure of the original CRT items. To avoid rote-learning, training items
included different numbers and content to the original CRT items. Six train-
ing items were created per CRT item. An example of an original CRT item is:
“A bat and a ball cost $1.10 in total. The bat costs $1.00 more than the ball.
How much does the ball cost?” An example of a corresponding training
item is: “A pen and a notebook cost $25 in total. The notebook costs $5
more than the pen. How much does the pen cost?” Unlike the test items,
training items included feedback (correct/incorrect) and guidance to help
participants reach the correct solution.

The feedback was tailored to the solution processes that each problem-
structure required. The bat and ball item, for example, can be solved using
algebra and substitution. Hence, for the six training items pertaining to the
bat and ball problem, participants who gave the incorrect response were
guided through a process of breaking the problem down into algebra and
solving it via substitution. The problem-structure of the CRT items 2 and 3 do
not have simple algebraic solutions (for example, item 3 would require an
understanding of exponential growth) but they do lend themselves to
worded explanations. Therefore, feedback for items reflecting problems 2
and 3 of the CRT was provided as a written explanation. See Supplementary
Material, Table 1, for examples of feedback for each of the three prob-
lem-structures.

Numeracy. Numeracy was assessed using the Berlin Numeracy Scale
(Cokely et al., 2012). The scale employed accuracy-based conditional
branching and, therefore, contained included two to four items. For

Figure 3. Examples of matrices used for (A) low, (B) medium, and (C) high con-
straint conditions.
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example, if a participant gave an incorrect response, they were then pre-
sented with an easier question. The scale was developed for highly edu-
cated samples such as college students and has been used in conjunction
with the CRT in several recent studies (Primi et al., 2018). An example is
“Out of 1,000 people in a small town, 500 are members of a choir. Out of
these 500 members in the choir 100 are men. Out of the 500 inhabitants
that are not in the choir 300 are men. What is the probability that a ran-
domly drawn man is a member of the choir?” Scores had a possible range
of 1 to 4.

WMC. WMC was assessed using the short Operation Span Task (Foster
et al., 2015; Unsworth et al., 2005). The task required participants to remem-
ber and then recall a list of letters while intermittently assessing the validity
of several short mathematical problems. A two-letter task, for example,
would start with an equation (e.g., “(9/3) � 2¼ 2?”) and the respondent
must select True or False. Following this, the respondent is presented with
a letter (e.g., “D”.) Next, they are presented with another equation to assess
(e.g., “(8/4) � 1¼ 1?”), followed by another letter (e.g., “E”.) A recall sheet is
then provided so that the respondent can serially recall the letters they
have seen. For this example, the respondent would list D, and then E. The
span task in Study 2 included 3 practice trials with letter spans of 2, and
then six test trials with letter-spans of 2 to 7. Accurate serial recall was
summed; scores had a possible range of 0 to 27.

Procedure
Testing was completed in person, in groups of five to eight. Participants
completed the study on computers in partitioned booths and were pro-
vided with a notepad and pen. Once consent was obtained, participants
completed a series of demographic questions. They were then given
instructions for the general procedure, including instructions that the note-
pad could be used to assist with mathematical working out but not for the
memory task components: matrix patterns or letter sequences. Notepads
were checked to ensure participants did not use them for the memory
tasks. Instructions were also presented with each question as appropriate,
for example: “Submit your final answer only. Use numbers only (up to 2
decimal places). Exclude symbols or words e.g. $, cents, km.” The numeracy
test was completed first, then, in random order, the WMC test and the CRT
training task were completed.

The training task included five blocks: test 1 (T1), training 1, test 2 (T2),
training 2, and test 3 (T3). Each test block included the three original CRT
items, no solutions were provided. The two training blocks included nine
items each, three per problem structure (see Materials). Test and training
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items were presented in the same order for all participants. All partici-
pants completed the test problems whilst remembering a matrix pattern.
However, the complexity of the matrices was dependent on the partici-
pant’s constraint condition: low, medium, or high load. At T1, as in Study
1, the information component was presented, then the matrix pattern to
memorise (800ms), the full question, and then a blank grid for recalling
the matrix pattern (see Table 1). At T2 and T3 the information component
was not presented prior to the matrix pattern. This was to prevent the
participants recognising the problem, predicting the question, and work-
ing on it before the load was enforced. At T2 and T3, a matrix pattern was
presented (800ms), then the full question until a response was made, and
finally a blank grid for the participant to recall the matrix pattern until a
response was made. Different matrix patterns were used for each item
and each test point. To ensure that any training effects would not be con-
founded by the order of matrix patterns, the order of matrix patterns was
counterbalanced such that half of the participants received matrix pat-
terns 1 to 9 and the other half received the same matrix patterns but in
reverse order 9 to 1.

Results

Preliminary analysis
To ensure that only the participants who put genuine effort into the con-
straint manipulation were included, those with overall matrix scores more
than two standard deviations below the mean for their condition were
excluded. Subsequently, five participants were excluded: Two from the
medium constraint condition and three from the high constraint condition.
Eighty participants remained in the final analyses (Nlow¼27, Nmedium¼28,
Nhigh¼25). The training paradigm was highly effective. Participants’ CRT per-
formance increased from T1 (M¼ 1.10, SD¼ 1.06) to T2 (M¼ 2.43, SD¼.91),
and from T2 to T3 (M¼ 2.57, SD¼.79). Participants demonstrated reasonable
numeracy (M¼ 2.53, SD¼ 1.18) and WMC (M¼ 20.46, SD¼ 5.11). The correl-
ation between numeracy and WMC was positive and marginally significant
r(33)¼.319, p¼.0514. Before assessing our hypotheses, we examined
whether numeracy, WMC, and CRT performance at T1 differed as a function
of constraint condition. One-way between-subjects ANOVAs did not reveal
any significant differences between constraint conditions on numeracy, F(2,
38)¼1.91, p¼.164, g2p¼.098, WMC F(2, 77)¼.824, p¼.442, g2p¼.021, or CRT
performance at T1, F(2, 77)¼.405, p¼.668, g2p¼.010.

4Some data was missing for this analysis due to a technical issue with the numeracy scale.
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Main analysis
To test hypotheses (1) and (2), a general linear model was employed with
three predictors: experience (3 levels; within-subjects factor), constraint (3
levels; between-subjects factor), and WMC (continuous predictor). The
model revealed significant main effects of experience, F(1.32,
97.89)¼124.09, p<.001, g2p¼.626, and WMC, F(1, 74)¼35.73, p<.001,
g2p¼.326, on CRT performance. Additionally, a significant three-way inter-
action was observed between experience, constraint and WMC on CRT per-
formance, F(2.65, 97.89)¼3.81, p¼.016, g2p¼.093. No other effects reached
statistical significance (see Supplementary Material, Table 2). To examine
the three-way interaction, we analysed the two-way interactions between
experience and constraint on CRT performance, with the model adjusted to
low WMC (-.5 SD) and then with the model adjusted to high WMC (þ.5 SD).
These results are presented in Figure 4.

Low WMC. When the model was evaluated at low WMC, the effect of load
was not significant at T1, F(2,74)¼.44, p¼.645, g2p¼.012. However, it was sig-
nificant at T2, F(2,74)¼4.83, p¼.004, g2p¼.115, and T3, F(2,74)¼5.81, p¼.005,
g2p¼.136. Tests of simple effects revealed that at T2 the mean performance
for participants in the low constraint condition was greater than that of
those in the medium constraint condition, F(1, 74)¼9.57, p¼.003, g2p¼0.115,
but no different from that for the high constraint condition, F(1,74)¼2.54,
p¼.115, g2p¼.033. The mean performance for participants in the medium
constraint condition was no different to that of those in the high constraint
condition, F(1,74)¼2.46, p¼.121, g2p¼.032. At T3 the mean performance for
participants in the medium constraint condition was lower than both the

Figure 4. Estimated means for CRT performance by test point and constraint and
with the model adjusted to low WMC (left panel) and high WMC (right panel). Error
bars þ/- 1 SE.
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low constraint condition, F(1, 74)¼10.25, p¼.002, g2p¼.122, and the high
constraint condition, F(1, 74)¼7.91, p¼.006, g2p¼.097. As for T2, there was
no significant difference between the low constraint condition and the high
constraint condition, F(1,74)¼.11, p¼.739, g2p¼.001.

Although there was, as expected, a three-way interaction between
experience, constraint and WMC, the pattern of the effect of constraint only
partly followed the expected pattern. In contrast to our hypotheses, the
high constraint condition yielded higher performance than the medium
constraint condition. One explanation for this, is that the constraint may
have impacted response times rather than accuracy5. To examine this possi-
bility, we tested the effect of the three-way interaction on response times.
The model revealed a main effect of test point, F(1.28, 79.16)¼38.07,
p<.001, g2p¼.380. Response time (sec) significantly decreased from T1
(M¼ 85.82, SE¼ 7.04) to T2 (M¼ 56.89, SE¼ 3.90), F(1,61)=, p<.001,
g2p¼.206, and from T2 to T3 (M¼ 32.77, SE¼ 2.13), F(1,61)¼63.37, p<.001,
g2p¼.509. However, no other effects reached statistical significance suggest-
ing that the accuracy of high constraint participants was not offset by lon-
ger response times (see Supplementary Material, Table 3).

High WMC. In contrast to low WMC, when the model was evaluated at
high WMC, the effect of constraint was not significant at T1, F(2,74)¼1.594,
p¼.210, g2p¼.041, T2, F(2,74)¼.324, p¼.724, g2p¼.009, or T3, F(2,74)¼1.098,
p¼.339, g2p¼.029.

Hypothesis 3 predicted that response times would increase from T1 to
T2 and decrease from T2 to T3. To test this hypothesis, we ran a one-way
repeated ANOVA with response time as the dependent variable and experi-
ence (3 levels: T1, T2, T3) as the independent variable. Four participants
were removed from this analysis due to having response times greater than
3 SD from the mean at any one test point. For the remaining participants
(N¼ 76), there was a significant effect of experience on response time,
F(1.25, 93.86)¼26.75, p<.001, g2p¼.263. Counter to our predictions, contrast
tests revealed that response time (sec) decreased from T1 (M¼ 90.49,
SE¼ 7.74) to T2 (M¼ 64.96, SE¼ 4.56), F(1,75)¼8.39, p¼.005, g2p¼.101, and
from T2 to T3 (M¼ 38.02, SE¼ 2.89), F(1,75)¼58.37, p<.001, g2p¼.438. We
observed, however, that the variance in response times was greater at T1
than T2 and T3. This large variability in response times at T1 suggested that
some of the participants may have been employing faster Type 1 responses
while others were employing slower Type 2 responses, resulting in a large
spread of response times.

5We would like to thank our reviewer, Valerie Thompson, for this suggestion.
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To explore this possibility, we divided the participants using a median
split based on response times at T1 (72.36 sec) and examined the effect of
experience separately for each group. For those with response times lower
than 72.36 sec at T1, experience had an overall effect on response time,
F(1,75)¼58.37, p<.001, g2p¼.438. In line with our initial hypotheses, their
response times significantly increased from T1 (M¼ 43.26, SE¼ 2.21) to T2
(M¼ 65.05, SE¼ 7.16), F(1,36)¼8.76, p¼.005, g2p¼.196, and decreased from
T2 to T3 (M¼ 38.62, SE¼ 4.59), F(1,36)¼30.41, p<.001, g2p¼.458. For those
with response times higher than 72.36 sec at T1, experience also had an
overall effect, F(1.31,48.41)¼58.04, p<.001, g2p¼.611. Their response times
significantly decreased from T1 (M¼ 137.73, SE¼ 10.82) to T2(M¼ 64.87,
SE¼ 5.76, F(1,37)¼37.95, p<.001, g2p¼.506, and from T2 to T3 (M¼ 37.42,
SE¼ 3.58), F(1,37)¼27.48, p<.001, g2p¼.426. These findings are presented in
Figure 5.

Discussion

Study 2 examined three hypotheses. The first hypothesis, that CRT perform-
ance would increase with training was supported. The second hypothesis,
that a three-way interaction between test point, WMC and constraint would
impact performance was partially supported. The third hypothesis, that
response time would increase from T1 to T2 and decrease from T2 to T3
was also partially supported. In line with the second hypothesis, test point,
WMC, and constraint interacted to affect performance. At T1, the high WMC
participants showed slightly higher performance than the low WMC

Figure 5. Mean response times for each participant by test point and speed at T1.
Colours reflect the median split of participants by response times at T1. Error bars
þ/-1 SE.
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participants but did not show an effect of constraint. This suggests that
some participants with high WMC may have been resilient to the effect of
load, even prior to training. In addition to having the cognitive hardware to
sustain greater cognitive loads, these participants may have had higher
numeracy (i.e. more advanced mindware) than their low WMC counterparts.
This is supported by the positive trend between WMC and numeracy in the
current study and by previous studies that have established an association
between these factors (e.g, Cokely et al., 2012).

At T2 and T3, the high WMC participants were able to successfully com-
plete the problems, even under constraint. This could be due to the relation-
ship between WMC and cognitive load. That is, a capacity effect may have
occurred such that greater WMC reduced the impediment caused by the
cognitive load because the participant had sufficient WMC to perform both
tasks. Alternatively, it could be because of the relationship between WMC
and automation. That is, a learning effect may have occurred such that
higher WMC led to faster transitions from Type 2 to Type 1. Alternatively, a
combination of capacity and learning effects may have led to the high WMC
participants’ strong performance under constraint at T2 and T3. Overall, the
high WMC participants appear to have learned how to solve the problems,
as indicated by their improved performance but, additionally, exhibited a
transition to Type 1, as indicated by their resilience under constraint.

In contrast, the low WMC participants showed improved performance
but less resilience to the constraints. For participants with low WMC, load
had a detrimental effect on performance at T2 and T3 but not at T1.
Broadly, this suggests that the training was effective in teaching the low
WMC participants how to solve the problems, but was not sufficient for
automating the solution process. A closer examination of the effect of con-
straint at low WMC revealed that, as expected, the performance of partici-
pants in the low constraint condition was higher than that of those in the
medium constraint condition but, in contrast to our expectations, equal to
that of the high constraint condition. This is somewhat consistent with
Study 1 in that the four-piece matrices were effective in reducing perform-
ance in both Study 1 and Study 2. The ineffectiveness of the five-piece
matrices employed in Study 2 may reflect a methodological issue in that
the higher constraint matrices may not have been as taxing as the medium
constraints. However, this seems unlikely given the success of this con-
straint in previous studies (e.g., Tr�emoli�ere et al., 2012). Another possibility
is that the high constraint group included people who, despite lower WMC,
were still able to circumvent the constraint effects. This introduces the pos-
sibility that confounding factors may need to be considered.

In the current study, numeracy and initial success on the CRT (perform-
ance at T1) did not differ significantly between the constraint groups and

260 Z. A. PURCELL ET AL.



are therefore unlikely to account for the difference in performance of the
high and medium constraint groups. However, and despite random alloca-
tion of participants to conditions, it is possible that the groups could have
differed on other factors that could influence automation such as IQ, think-
ing dispositions, self-efficacy or motivation. This pattern of results highlights
a particularly pressing question for future research: Which individual differ-
ences affect the automation continuum, and how? Although the perform-
ance of the high constraint group deviated from the expected pattern of
performance, the remaining results from Study 2 are generally consistent
with the proposed relationship between experience and reasoning Type.

The third hypothesis was related to proposed changes in response times
across time points. Overall, response times reduced significantly from T1 to
T2 and T2 to T3. However, a closer examination revealed that some partici-
pants followed the expected pattern of results; response times increased
from T1 to T2 and decreased from T2 to T3. In line with our hypothesis, this
indicates a transition from Type 1, to Type 2, and back to Type 1 process-
ing. In contrast, others displayed a pattern of consistently decreasing
response times which indicates that they may have employed ineffective
(i.e. low accuracy) Type 2 processing at T1, effective Type 2 processing at
T2 and effective Type 1 processing at T3. Therefore, although most partici-
pants exhibited poor performance at T1 it seems that at least some were
engaged in slower Type 2 processes. Interestingly, despite the large vari-
ance observed for response times at T1, the participants’ response times
converged at T2 and T3. This is a preliminary indication that, prior to train-
ing, some people are less likely to engage in deliberative thinking than
others. After just a small amount of practice however, the difference
between these groups appears negligible.

Response times indicated that some participants followed the expected
pattern of changes in thinking Type across training, while others did not.
An explanation for these different trajectories is offered by dual process
models that incorporate the possibility of ineffective Type 2 processing. For
example, Pennycook et al. (2015) three-stage dual process model suggests
that conflict detection leads to Type 2 processing but that conflict detec-
tion, alone, is not sufficient for successfully overriding incorrect Type 1
responses. His idea is extended by Stanovich (2018) who postulated a need
for a 2� 2 classification system using response times and accuracy. For
those giving incorrect responses, as in the current Study at T1, fast respond-
ing indicates inaccuracy due to a lack of mindware or failure to detect con-
flict, whereas, slow responding indicated inaccuracy due to a failure to
override the incorrect default response. It may be that the two groups (fast
and slow responders) in the current study fall into these categories.
However, the current findings must be replicated and extended to gain a
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deeper understanding of the individual and cognitive characteristics that
distinguish these groups and their unique trajectories of automation.

General discussion

In two studies, we used manipulations of experience and cognitive con-
straints to examine the relationship between experience and thinking Type.
Generally, the results supported the claim that Type 2 processes can transi-
tion into Type 1 processes with practice. In Study 1, we found evidence
that participants with different levels of real-world mathematical experi-
ence, as operationalised via university degree and occupation, showed dif-
ferences in performance and thinking Type when completing the CRT. In
Study 2, we found evidence that as participants’ mathematical training
increased, they exhibited increased performance, changes in response times
and shifts in thinking Type. Together, these studies suggest that real-world
changes in experience are associated with differences in thinking Types and
that these differences can be generated in experimental settings. Overall,
the findings support the dual process’ automation hypothesis—that Type 2
processes can become Type 1 processes over time (De Neys & Pennycook,
2019; Stanovich, 2018). Additionally, the findings support the suggestion
that previously varied findings may be accounted for by individual differen-
ces in experience (Bago & De Neys, 2019) and that the mechanisms under-
lying correct responding on the CRT may be mediated by experience.

Previous studies have employed cognitive constraints to test which Type
of thinking is engaged when people are solving the CRT. Some have found
support for the assertion that correct solutions to the CRT require Type 2
processing (Johnson et al., 2016) while others have found evidence that
correct solutions can also be reached via Type 1 processing (Bago & De
Neys, 2019). In line with previous commentary (Bago & De Neys, 2019), the
present findings suggest that mathematical experience may, at least in
part, account for this variability. The studies that have shown a detrimental
effect of cognitive constraint on CRT performance may have included par-
ticipants at an intermediate phase of experience. That is, participants who
were able to reach the solution via Type 2 processes. In contrast, studies in
which constraints had a smaller effect on performance may have included
participants with greater mathematical experience. That is, participants who
could reach the correct solution via Type 1 processes. In addition to
accounting for this variability in previous findings, the role of experience
may also facilitate the integration of competing theories about the mecha-
nisms underlying Type 1 and Type 2 processing.

Traditional explanations for performance on bias tasks suggested that
correct responding was the result of Type 2 dependent, default-intervention
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processes (e.g., for the CRT: Kahneman, 2011; Kahneman & Frederick, 2005).
The default-intervention position asserts that incorrect default responses
generated via Type 1 processes can be overridden and corrected by Type 2
processes (Evans, 2006; Evans & Stanovich, 2013). However, recent instances
of correct responding by participants under cognitive constraint has been
presented as a challenge to the default-intervention explanation for cor-
rect responding on bias tasks (e.g., Bago & De Neys, 2017, 2019). For
example, studies using two-response paradigms have found that some
participants who gave correct responses under Type 2 conditions were
also able to give correct responses under Type 1 conditions (e.g.,
Pennycook & Thompson, 2012; Thompson & Johnson, 2014; Thompson
et al., 2011). Considered alongside the current findings it seems likely that
Type 2 dependent, default-intervention processes do not underlie correct
responding by people with high levels of relevant experience. However,
default-intervention processes may underlie correct responding by people
with intermediate levels of experience. Future studies could investigate
whether the processes underlying correct responses are mediated by
experience, for example, by combining experience manipulations with a
two-response paradigm.

The present findings can be accounted for by Stanovich’s (2018) mind-
ware continuum. The findings from Study one reflect a parabolic relation-
ship between experiment and thinking Type—from Type 1 to Type 2 and
back to Type 1—however, a potential floor effect left some uncertainty
regarding the nature of reasoning by low experience participants. This was
addressed in Study 2 by incorporating an analysis of response times. Study
2 demonstrated that for some people there was, as hypothesised, a para-
bolic learning trajectory reflecting the full mindware continuum. In these
cases, low experience was associated with fast but incorrect responses (i.e.
Type 1), intermediate was associated with slower and cognitively demand-
ing but correct responses (i.e. Type 2), and high experience was associated
with fast but correct responses (i.e. Type 1).

However, for the remaining participants, an unexpected trajectory was
observed. Low experience was associated with slower and incorrect
responding (i.e. ineffective Type 2), intermediate was associated with effect-
ive Type 2 processing, and high experience with Type 1. This unexpected
pattern can be accounted for within the mindware continuum provided
these participants were at an intermediate stage of experience prior to
training. However, that is not necessarily the case, for example, it may be
that regardless of experience, some individuals were more likely to engage
in deliberative thinking than others. These findings highlight two important
queries for future research: First, who is more likely to engage in delibera-
tive thinking at novice stages of experience and what are the underlying
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processes behind that engagement? Second, do differences in deliberation
influence an individual’s subsequent learning trajectory and, if so, how?

The transition of reasoning processes from effortful to easy is a com-
monly assumed but rarely investigated concept. This article presents a
unique combination of experience manipulations and cognitive constraints
to explore the relationship between experience and reasoning. It provides
the first explicit empirical support for the dual process assumption that
Type 2 processes can become Type 1 processes with practice and, in doing
so, brings to light new and important queries for the continued examin-
ation of the relationship between experience and reasoning.
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